Rigorous analysis of a randomised number field sieve
نویسندگان
چکیده
منابع مشابه
The number field sieve
We describe the main ideas underlying integer factorization using the number field sieve.
متن کاملThe Number Field Sieve
One of the most important and widely-studied questions in computational number theory is how to efficiently compute the prime factorizations of large integers. Among other applications, fast prime-factorization algorithms would break the widely-used RSA cryptosystem, and be of great interest in complexity theory. In particular, there is no algorithm which can factor an integer n in polynomial t...
متن کاملA Description of the Number Field Sieve
The number field sieve is a relatively new method to factor large integers. Its most notable success is the factorization of the ninth Fermat number. It is significantly faster than all known existing integer factoring algorithms. We examine the theoretical underpinnings of the sieve; after understanding how it works, we state the algorithm. We look mostly to the algebraic number theory aspects...
متن کاملThe Tower Number Field Sieve
The security of pairing-based crypto-systems relies on the difficulty to compute discrete logarithms in finite fields Fpn where n is a small integer larger than 1. The state-of-art algorithm is the number field sieve (NFS) together with its many variants. When p has a special form (SNFS), as in many pairings constructions, NFS has a faster variant due to Joux and Pierrot. We present a new NFS v...
متن کاملA Kilobit Special Number Field Sieve Factorization
We describe how we reached a new factoring milestone by completing the first special number field sieve factorization of a number having more than 1024 bits, namely the Mersenne number 2 − 1. Although this factorization is orders of magnitude ‘easier’ than a factorization of a 1024-bit RSA modulus is believed to be, the methods we used to obtain our result shed new light on the feasibility of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2018
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2017.10.019